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Abstract: To provide cost-effective access to data in storage-intensive computing
environments, mass storage systems must be integrated with underlying file systems.
Previous projects have presented specialized client interfaces or have integrated mass
storage with local file systems. Our approach is to integrate the distributed file system DFS,
with support for DMAPI, and HPSS, a high performance mass storage system. The result
is a mass storage system that includes a fully distributed file system, data transfer rates that
scale to the gigabyte/sec range, and archival storage, scalable to multiple petabytes.
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Introduction

Enterprises with large or networked computing environments often employ distributed file
systems, providing several advantages: data consistency guarantees, location transparency,
uniform name space, ease of administration, performance, and cost.

In recent years, the need to store high-resolution images, scientific data, etc., has created a
serious imbalance between I/O and storage system performance and functionality[1]. To
solve this imbalance, the performance and capacity of current mass storage systems must
improve by orders of magnitude. Coupling mass storage systems with underlying
distributed file systems, providing the best features of each and providing a seamless view
of the file system, is desirable. Three emerging technologies have made this possible: The
Distributed File System (DFS)[2], the High Performance Storage System (HPSS)[3],
and the Data Management Application Interface (DMAPI)[4].

In this paper, we discuss the work of the Transarc Corporation and the HPSS
Collaboration to integrate DFS with HPSS using the DMAPI. We discuss past approaches
to mass storage integration, the features and requirements of our system, and the overall
architecture. We also describe the extensions needed in DFS, HPSS and DMAPI to support
this integration, HPSS/DFS configuration options, with their corresponding performance
data, and future work.

Background

Integrating mass storage with file systems to provide hierarchical storage management
(HSM) has typically followed one of two philosophies:
• The file system back-end approach uses mass storage to extend the storage on the local

platform.
• The mass storage file system approach implements a file system within the mass

storage application.

File system back-ended mass storage allows seamless integration of mass storage with the
file system platform. Leveraging the functionality of the platform simplifies HSM
functionality but limits file and storage features to those supported by the local file system.
These implementations require specialized software in the platform operating system, and
network file services supported by the platform must be used for network access to files.
Implementations based on this scheme include Data Migration Facility (DMF)[5],
AMASS [6], and E-MASS [7].

Mass storage file system approaches typically present their file systems through specialized
client interfaces. These approaches do not require operating system kernel modifications,
and additional functionality is implemented directly in the HSM. This approach offers
flexibility in file and storage features, such as support for network-attached peripherals,
third-party transfers, and parallel I/O. However, specialized client code may be required to
take advantage of any extended features. Implementations based on this scheme include
Common File System (CFS)[8], UniTree [9], and HPSS.
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Features and Requirements

The High Performance Storage System (HPSS) was developed by a collaboration of IBM
and four Department of Energy laboratories: The Lawrence Livermore National Laboratory,
the Los Alamos National Laboratory, Oak Ridge National Laboratory, and Sandia National
Laboratories. A goal of the project was to provide mass storage capacity scalable to
multiple petabytes, using standard languages and communications without operating
system kernel modifications.

HPSS supports a high-speed, parallel  interface[10] to achieve data transfer rates greater
than 1 GB/sec for a single file. It supports third party I/O transfers[11] which allows data
to move directly from the storage media to the client without intermediate server
processing. HPSS supports secure access to files and directories through DCE security
features, such as Access Control Lists (ACLs) and authenticated Remote Procedure Calls
(RPCs). File sizes up to 264  bytes are supported.

A secure, platform-independent global name space is desired for several HPSS deployment
sites. DFS emerged as the primary candidate to provide this service. It has since become a
requirement for HPSS to support DFS. However, the vast majority of these HPSS sites
still want the high-speed I/O performance for very large files, which is the hallmark of
HPSS.

DFS, developed by Transarc Corporation through the Open Software Foundation (now
called The Open Group), is a highly scalable distributed file system. DFS provides a
uniform view of file data to all users through a global name space. In addition to directory
hierarchies, DFS supports logical collections of files called filesets. A fileset is a directory
subtree, administered as a unit, that can be mounted in the global name space. Multiple
filesets may reside on an aggregate, which is analogous to a disk partition. Filesets may be
moved between aggregates, either on the same or different servers to achieve load
balancing. DFS also supports ACLs on both directories and files to allow granting different
permissions to many users and groups accessing the object. DFS uses the DCE concept of
cells, and allows data access and authorization between clients and servers in different
cells.

DFS uses the Episode (DCE LFS)[12] physical file system. This log-based file provides
features like filesets, cloning (on-line backup through a fast snapshot capture mechanism),
ACLs, etc., that DFS utilizes. DFS can also use other native file systems, such as UFS.

Coupling DFS with HPSS reduces the cost of storage by allowing data to be exported to
media other than the disks directly attached to the DFS file server and supports files greater
than the size of the disk space managed by DFS. However, the integration had to meet
requirements from both Transarc and the HPSS Collaboration:
• A standard interface for coupling DFS with HPSS must be employed.
• Transparent, automatic archiving and caching of data must be provided.
• Both DFS and HPSS must support partially-resident file data.
• Changes made to a file or directory through the DFS interface must be visible through

HPSS interfaces and vice versa.
• HPSS high speed file transfer mechanisms must continue to provide single file transfer

rates over 1 GB/sec.
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• The implementation must not effect the data transfer speeds of any data resident on
disks managed by DFS, and file accesses made through DFS must not impact HPSS
performance.

Fortunately, standards for interfacing file systems and data management applications
(DMAP) are emerging. In the mid-nineties, the Data Management Interfaces Group
(DMIG), with representatives from several file system and mass storage vendors, defined a
data management interface (DMAPI) for UNIX based file systems. DMAPI, now called
XDSM [13], has been adopted as a standard by the Open Group. It defines an API that can
be implemented by file system vendors and used by a DMAP. The primary advantage of
this standard is that mass storage vendors implementing a DMAP need not modify the OS
kernel, thus enhancing portability and the ease of developing such applications.

DMAPI is a low-level interface to the physical file system. It provides the DMAP with the
ability to store important attribute information with a file and allows for the generation of
notifications to the DMAP on occurrence of various file system operations. DMAPI enables
the DMAP to control disk storage by allowing the DMAP to move disk-resident file data to
tertiary storage systems and vice-versa.

Configuration Options

A straightforward design approach satisfying both DFS and HPSS requirements was to use
DMAPI to integrate DFS with HPSS. As noted, a primary objective of this effort was to
provide the distributed services of DFS and the high-speed I/O performance of HPSS.
Because DFS and HPSS have separate customer bases, with a relatively small overlap, the
cost of providing the high-speed I/O through DFS was deemed too high. Therefore, at the
fileset level, two data management configuration options, corresponding to the HSM
integration philosophies previously mentioned, are provided:
• HPSS is used strictly as an archive facility for DFS, making the integrated DFS/HPSS

system a traditional HSM. Access to the name and data space is provided only through
the DFS interfaces. Filesets managed with this option are called archived filesets.

• Consistency between HPSS and DFS name and data spaces is maintained. DFS data is
archived to HPSS, but access to the name and data space is available through both DFS
and HPSS interfaces. Updates made through the DFS interface are visible through the
HPSS interface and vice versa. Thus, a user may access data through DFS, at standard
DFS rates, and when high performance I/O rates are important, use the HPSS interface.
Filesets managed with this option are called mirrored filesets.

Architectural Overview

The design for integrating HPSS with the Episode file system is shown in Figure 1. The
details for each component are discussed in the following sections.
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DMAPI Implementation for DFS

The DMAPI implementation for DFS, called the DFS Storage Management Toolkit (DFS
SMT), is fully compliant with the corresponding standard XDSM specification. In
addition, it provides the following optional features; persistent opaque DM attributes,
persistent event masks, persistent managed regions, non-blocking lock upgrades and the
ability to scan for objects with a particular attribute.

The bulk of DFS SMT is implemented in the file server. DFS SMT has both user and
kernel space components. A user space shared library implements all APIs in the DMAPI
specification. A device driver provides communication between the user space component
of DFS SMT and the kernel component.

The DFS SMT kernel component consists of two sub-components: a file system
independent layer (DMBASE) and a file system dependent layer (DMLFS).  DMBASE
receives requests via the device driver, processes them and responds to the DMAP via the
driver. It maintains DMAPI sessions, DMAPI tokens, event queues, and the registered
disposition of events for various file systems. This layer is also responsible for receiving
events from the DMLFS and dispatching them to the DMAP. For each DMAPI call,
DMBASE is responsible for making appropriate calls to the managed file system via
DMLFS.
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DFS uses an enhanced virtual file system[14], VFS+, that is implemented for the DFS
client and any physical file systems exported by DFS servers. VFS+ was augmented to
fetch and store DM attributes, provide persistent managed regions and events, perform
invisible I/O, purge data from files, and verify file residency.

DMLFS was designed as a layer in the stackable virtual file system model[15] and is an
implementation of the VFS+ layer for DFS SMT. DMLFS operations are responsible for
generating events. It consults with DMBASE to determine if any DMAP has registered to
receive notification for events related to that particular operation and then generates the
events. If the event is synchronous, it causes the file system operation to wait for a
response to the event before proceeding. It also provides for interlocking between DFS
SMT requests and file system calls.

To support persistent DM-related metadata, an extended attribute facility was provided in
Episode. DM attributes, event masks, managed regions, and attribute change times (dtime
values) are stored as extended attributes. This eliminates the need to store the attributes in a
separate auxiliary file visible in the file name space. These extended attributes are treated as
file metadata and changes to attributes are logged.

Episode was modified to support files that become sparse by punching holes that release
disk resources. With a conventional sparse file, reading from a hole returns zeroes. To
assume these same semantics for a hole that exists because the DMAP migrated the data to
tertiary storage is incorrect. In this case, the DMAP must retrieve the data from tertiary
storage. Hence, a facility is provided in Episode to mark file blocks as being off-line (in
tertiary store) instead of as a hole. This allows the file server to handle partially resident
files.

To prevent blocking file server (kernel) threads while waiting for a response to an event, a
mechanism to notify the client to retry after a specified interval of time was added. The retry
interval is exponentially backed off on each retry.

The DFS fileset dump and restore capability was augmented to include extended attributes
and migrated regions. Migrated data is not recalled when a dump is taken, producing an
"abbreviated" dump. Checks were added to DFS and retrofitted into prior releases to
prevent restoring an abbreviated dump with a file system that may not be able to interpret its
contents.

HPSS Implementation for DFS Support

The HPSS collaboration developed two new components, an HPSS Data Management
Application (DMAP) and a DMAP Gateway. The HPSS Name Server, Bitfile Server, and
Client API also required modifications.

HPSS/DMAP

HPSS Data Management Application (HPSS/DMAP) is responsible for initiating and
coordinating file and data interactions between Episode and HPSS. It catches and processes
desired name and data space events generated by Episode sent through the DFS SMT;
migrates file data from Episode to HPSS; purges unneeded Episode file data after that data
migrates to HPSS; and processes requests originating in HPSS interfaces that require either
Episode name or data resources. HPSS/DMAP resides on the same machine as the disk(s)
managed by the Episode file system.
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For portability, HPSS/DMAP communicates with HPSS components via XDR over TCP
sockets. The HPSS/DMAP also exists to isolate dependencies on DFS, Episode and DCE.

HPSS/DMAP registers to receive name and data space events. After catching a name space
event involving a mirrored fileset, the appropriate requests are made to HPSS to keep the
name spaces synchronized. For archived filesets, only create and destroy name space
events are processed, but no HPSS resources are utilized. HPSS/DMAP receives data
space events when a file is read, written, or truncated and the data region involved is
registered with the DFS SMT. HPSS/DMAP is responsible for caching data to Episode that
is not present; invalidating HPSS data, if necessary; and manipulating data regions to
minimize the occurrence of events involving the same region. HPSS/DMAP can cache
partial files.

HPSS/DMAP provides an interface for HPSS to request that an action occur in DFS to
keep the HPSS and DFS name and data spaces synchronized. This mechanism is only used
with mirrored filesets and occurs when an HPSS client requests to create, delete or modify
a name space object. This interface is also used by HPSS to migrate or purge data from
Episode disks. Before file data can be altered through HPSS interfaces, the data must first
be purged from Episode disks. The capability to forward DCE credentials is provided,
enabling HPSS/DMAP to make DFS requests on behalf of the user.

HPSS/DMAP migrates file data from Episode to HPSS. To free Episode disk resources, it
also purges file data from Episode. Only the data that has been modified on Episode is
migrated to HPSS, thus, a minor modification to a very large file will not result in re-
migrating the entire file. Because policies for migrating and purging data are separately
configurable, file data migrated from Episode is not automatically purged. In many cases,
data for a given file is present in both Episode and HPSS and that data can be read from
either interface without any data movement between Episode and HPSS.

DMAP Gateway

The DMAP Gateway is a conduit between HPSS/DMAP and HPSS. HPSS servers use
DCE/RPCs, the Encina transaction manager, and Transarc’s SFS for metadata managing
HPSS objects. The DMAP Gateway encodes requests using XDR and sends them via
sockets to HPSS/DMAP and translates XDR from the HPSS/DMAP to DCE/TRPC/Encina
calls to the appropriate HPSS server. XDR and sockets were used for portability. When a
connection between the HPSS/DMAP and Gateway is made, mutual authentication occurs.

The DMAP Gateway keeps track of the location in DFS and in HPSS of all the filesets it
manages. For scalability, multiple DMAP Gateways are supported. However, a given
DMAP Gateway will only operate on the filesets it manages. At this time, only filesets
managed by DFS and HPSS are supported.

In addition to translating requests between HPSS/DMAP and HPSS servers, the DMAP
Gateway keeps fileset request statistics and internal DMAP Gateway resource utilization.
Heavily used filesets can be identified and management of these filesets could be distributed
across multiple DMAP Gateways to improve performance.

Name Server

Support for filesets (disjoint directory trees) was added to the Name Server. HPSS
supports three types of filesets:
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• HPSS-only filesets contain objects accessible only through standard mechanisms
available to HPSS Name Server clients.

• Archived filesets are directory structures with private files containing copies of file data
from any DFS files that have migrated to HPSS. Path names to directory objects are
generated by HPSS/DMAP based on configuration policies. At any given time, the data
in these files may be out of date with the DFS data. Access to objects in these filesets is
restricted to the DMAP Gateway and HPSS root.

• Mirrored filesets contain objects that are kept synchronized between HPSS and DFS.
Objects in mirrored filesets have corresponding objects in DFS and HPSS with
identical names and attributes. HPSS clients access these objects as before, but when-
ever a client’s request alters the name space, the alteration occurs as a side effect of the
change made in Episode. Such requests are forwarded by the Client API to the DMAP
Gateway and then to HPSS/DMAP. HPSS/DMAP makes appropriate Episode system
calls, causing events to be generated.  Processing the event ultimately results in a
request to the HPSS Name Server to perform the appropriate action. Requests
processed this way include create, remove, symlink, hardlink, and permission changes.
This mechanism is transparent to the HPSS client.

Bitfile Server

The Bitfile Server was modified to recognize when file data on HPSS was inconsistent
with its DFS counterpart. Inconsistent data occurs whenever file data altered through the
DFS interface has not yet migrated to HPSS. The Bitfile Server was modified to return a
special error value whenever an HPSS I/O request involves file data on a mirrored fileset
that is in this state. This error signals the Client API to request that the file data be migrated
to the HPSS file before retrying the I/O request. Before the Client API reissues any write
requests, it first requests that the Episode data be invalidated.

HPSS Client API

The HPSS client API was modified to handle fileset domains, recognize an object’s fileset
type, determine which server to contact to process a request for a given object, and cross
junctions (fileset domains). Junctions provide the ability to link filesets managed by the
same Name Server or by another HPSS Name Server. With this mechanism multiple
HPSS name spaces can be joined to form a single name space.

For HPSS-only filesets, the Client API issues the same requests as in prior HPSS releases.
Behavior of objects in this type of fileset is identical to current releases of HPSS, unless the
client crosses a junction. Access to objects in this type of fileset is only allowed through
non-DFS HPSS interfaces. If a system administrator decides to also permit access through
DFS, then tools must be run to import the HPSS metadata into the Episode file system.

For archived filesets, client access through HPSS interfaces are prohibited. In general, file
data in this type of fileset must be accessed through DFS, but in special cases, a system
administrator may access the HPSS objects.

If an HPSS client request will alter the name space of a mirrored fileset, the Client API
forwards the request to the DMAP Gateway. The Gateway sends the appropriate request to
HPSS/DMAP which then requests Episode to make the modification. When Episode
processes the request, a DMAPI event is generated and the HPSS/DMAP event handler
makes the necessary HPSS calls to keep the name spaces synchronized. All name space
modifications in mirrored filesets are the result of DMAPI events generated either by DFS
calls, or by Client API calls forwarded to the HPSS/DMAP.
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The Client API was modified to provide a consistent view of file data between DFS and
HPSS interfaces for mirrored filesets. The Client API recognizes the new error returned by
the Bitfile Server when data is inaccessible through HPSS because of DFS activity. When
this error occurs, the Client API initiates steps to migrate and purge Episode data so the
HPSS and Episode data remain synchronized.

DMAPI Extensions

To support mirrored filesets our design requires a superset of the DMAPI standard. DFS
SMT was extended to support synchronous post events generated after Episode completes
a name space modification but before the original user request completes. These events are
necessary to keep HPSS and DFS name spaces synchronized. Delivery of synchronous
post events is guaranteed to be fast. Also, to support mirrored filesets, the ability to register
and generate events for permission changes to a file or directory were added. These events
occur whenever the owner, group, mode, or ACL is changed.

Unique issues are raised because DFS supports filesets and aggregates, while the DMAPI
was designed for traditional file systems. These issues are addressed by the DFS SMT.
Specifically, to handle fileset destruction additional name space events were defined.
Mounting and unmounting aggregates is treated by DMAPI as a single event. The actual
implementation for DFS SMT is a multi-step process, with complex recovery logic,
because events must be generated and processed for each fileset on the aggregate.

Additional fields were added to DMAPI structures. A new field was added to the events
structure to associate paired events (pre and post events). A new field was added to the
region structure to store user defined opaque data. Two fields were added to the statistics
structure that identify the presence of ACLs associated with a file and to store a fileset
identifier.

Additional DMAPI management interfaces were added to handle ACLs, DCE security
authentication information, to enumerate information about filesets, and to determine the
handle for a named file in a known directory.

Examples

To illustrate the interaction between the system components, an overview of creating and
reading a file follows.

DFS Create Example

When a client requests to create a file through DFS, DFS SMT generates a sequence of
DMAPI create events. HPSS/DMAP catches these events and if the fileset type is mirrored
it issues a request to the DMAP Gateway to create the HPSS file. The DMAP Gateway
issues a request to the Name Sever and Bitfile Server through the Client API to create a
name space object and a bitfile. After these HPSS resources have been created, the DMAP
Gateway responds to HPSS/DMAP, which then responds to the DMAPI create events.
Finally, the DFS file resources are allocated and after that completes, the DFS client’s
create request completes.

When a client requests to create a file in an archived fileset, DFS SMT still generates create
events. However, HPSS/DMAP does not immediately create the HPSS file. It simply
marks the file as a candidate for migration and responds to the create event. HPSS
resources will be allocated when the file is migrated to HPSS. Since HPSS resource
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allocation is delayed, the DFS client’s request completes only slightly slower than a create
request in a DFS fileset not integrated with HPSS.

HPSS Read Example

This example applies only to mirrored filesets. When an HPSS client requests to read data
from a file, the request is issued through the Client API to the Bitfile Server. If the Bitfile
Server has the desired data and that data is consistent with the data mirrored on DFS, the
Bitfile Server proceeds to read the data. However, if the data is inconsistent with DFS, the
Bitfile Server returns an error to the Client API.

Upon receiving an inconsistent data error, the Client API requests the DMAP Gateway
managing the fileset to migrate the data from Episode to HPSS. The DMAP Gateway
contacts the HPSS/DMAP, which uses DFS SMT to migrate the data from Episode to
HPSS, and then marks the data as synchronized. HPSS/DMAP responds to the DMAP
Gateway, which responds to the Client API. At that point, the desired data has migrated to
HPSS and the Client API retries the read request.

Performance Comparisons

Performance data was gathered from tests run on two platforms; an AIX 4.1 system and a
Solaris 2.5.1 system. The performance of these systems varied, due to different processor
speeds, but the overall trends were identical. We measured performance for a DFS only
fileset and compared it to archived and mirrored filesets. We also measured the
performance for an HPSS only fileset and compared it to a mirrored fileset. To determine
the impact of the DFS SMT on file system performance, we measured performance on
Episode aggregates with and without DFS SMT. In both cases, the DM application
(HPSS/DMAP) was not running. The numbers reported are averages of several runs,
where each run was performed with an empty cache.

DFS SMT Performance

Sequential read/write performance was measured using the UNIX "cp" command to copy a
file between the Episode aggregate and a UFS aggregate. Our tests found that an aggregate
configured with the DFS SMT layer enabled to support DM applications, had a 1.5-2.5%
decrease in read/write performance. The small overhead due to the extra layer in the file
system is overshadowed by the time taken for synchronous disk I/O.

In addition to read/write performance measurements, we also ran the NFS Connectathon
benchmark suite that attempts to thoroughly exercise file system functionality such as file
and directory creation and deletion, lookup, setattr, getattr, chmod, stat, read, write, link,
rename etc. We found that it takes 5.7% longer for file system calls to execute on a DFS
SMT managed aggregate. In contrast to the read/write tests, the Connectathon test may lead
to a significantly smaller proportion of synchronous I/O operations because of cached
metadata. Without the masking effect of I/O, the overhead incurred by the DFS SMT layer
is more perceptible.

We are working towards making the DFS SMT code more efficient, and expect the over-
head to decrease in future releases.

DFS Performance

Archived filesets generate and process events whenever files are created and deleted,
incurring some overhead. Events are not posted for any other name space events, such as
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link, rename, etc., so these operations, perform at the same rate as a DFS only fileset.
Unless file data must be staged from HPSS, I/O performance rates for an archived fileset is
identical to those of a DFS only fileset.

Creating a file in an archived fileset incurs an overhead between 30-40% above creates in a
DFS only fileset. This overhead is attributed to event processing in DFS SMT and to event
handling by HPSS/DMAP which must set DM attributes, which involves I/O. The cost
incurred for processing file deletes has some variance. At a minimum, the DM attributes
must be checked to determine if the file has migrated to HPSS. In this case, the overhead
for deletes is 20% greater than deletes in a DFS only fileset. If the file has migrated to
HPSS, HPSS/DMAP must log object handle information for the file and the overhead
increases by the amount of time it takes to write to the log.

The overhead associated with client I/O to files is insignificant for both mirrored and
archived filesets, unless the data must be cached to DFS. Moving data between DFS and
HPSS is highly dependent on disk speed, network speed, and system load, but during our
tests, data transfers between DFS and HPSS were as fast as permitted by the hardware.

HPSS Performance

Mirrored filesets incur an additional overhead for any name space activity that alters the
name space. Such activity includes creates, unlinks, renames, and owner or permissions
changes. Name space activity that does not alter the name space, such as “ls” and “cd”,
perform at the same rate as HPSS only filesets. In general, the overhead for keeping the
DFS and HPSS name spaces synchronized is about 10% greater than the same activity in
an HPSS only fileset. The overhead seen from HPSS is significantly lower than the
overhead seen from DFS because HPSS has a higher cost for name space updates than
DFS. This cost is largely due to the infrastructure and efforts are underway to reduce it.

I/O throughput for mirrored filesets is the same as for HPSS-only filesets, if all the
required data is present on HPSS media. If data must be migrated or purged from Episode,
HPSS I/O may be delayed. The length of the delay depends on the amount of data to be
migrated, network and media speed, and the load currently on the DFS and HPSS systems.

Data and name space activity on HPSS-only filesets perform at the same rates as previous
HPSS releases. The cost incurred by the use of filesets is insignificant.

Conclusions

The integrated DFS/HPSS system is flexible enough to support a variety of environments.
Data I/O rates for both DFS and HPSS are consistent with the rates before DMAPI was
implemented, except when data must be migrated or staged. Supporting partial data
migration and caching allows pieces of files to be moved, improving the speed of migrating
and caching file data between DFS and HPSS.

Providing consistent name spaces between DFS and HPSS is possible, but at an additional
cost. However, the additional cost of creating files becomes less significant as the files
increase in size.

Drawbacks of the integration include greater administrative complexity and performance
overhead arising from DMAPI, especially when there is a need to keep the HPSS and DFS
name spaces synchronized.
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Future Work

Future DFS work includes support for cloning filesets on DFS SMT managed aggregates,
to enable fileset movement and replication. When dumping a fileset, DFS will allow for
purged data to be recalled from tertiary storage, supporting full and abbreviated fileset
dumps. Extensions will be added to the DFS client-to-file-server protocol, allowing the DM
attributes to be examined.

HPSS/DMAP can be ported to other platforms that support DMAPI, allowing these file
systems to be archived in HPSS, however, mirroring name spaces will be impossible
without DMAPI extensions. Functionality must be added to HPSS/DMAP to support
cloning and replication.

Though we have made DFS/Episode conform to DMAPI, it is not a perfect match since
DMAPI mainly addresses local file systems like UFS. To provide a better match between
DFS and DMAPI, we would like the following extensions to DMAPI:
• To support backup applications, it must be possible to capture all attributes for a file

(ACL, Episode file property lists, etc.).
• DFS allows filesets to move between file servers at different sites. We would like to

move filesets without recalling all the data. The DMAP at the new site should be able to
interpret DM attributes correctly and recall migrated data. This requires DM attributes to
contain location information.

HPSS would like the following extensions to DMAPI:
• Support for permission change events and additional events for name space

synchronization.
• Modification to the locking and I/O interfaces for better parallel file system support.
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